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Note 

Fourier Representation of the Coulombic Contributions 
to Polymer Chains 

I. INTRODUCTION 

Slowly convergent lattice summations arise in quantum-mechanical studies of 
chainlike systems. One possible approach to calculate them is by using the Fourier 
representation expressions for classical linear arrays of charges. Applicability of these 
formulas is considered and a substitute is derived for those cases where already 
existing formulas are no longer optimal. 

The Hartree-Fock-Roothaan (LCAO-SCF-CO) method is now widely applied 
to calculate the electronic structure of infinite chainlike systems (l-31. This method is 
used mainly to interpret and predict physico-chemical properties of polymers and 
other quasi-one-dimensional systems such as the interpretation of polymer XPS 
spectra, estimation of carrier mobilities, and studies of the electron distribution during 
the process of chemical bonding. Calculation of the total energy in these quasi-one- 
dimensional systems is difficult, due to convergence problems with respect to the 
number of interacting neighbors. Detailed numerical experimentations have been 
devoted to this question [4-61 and, only recently, a satisfactory solution was pro- 
posed [7]. The essence of this approach is to recognize that beyond a certain distance of 
interactions and, for a not too delocalized atomic basis set, the contributions to 
the Fock matrix elements and the total energy are of purely electrostatic nature. 
Exact expressions simplify into classical, point-charge interactions, and the associated 
numerical effort is at the same level of difficulty as that encountered in classical 
Madelung summations. The problem reduces finding an efficient procedure for 
evaluating lattice sums over one-dimensional arrays assuming, as required by the 
theoretical model, it extends to infinity. Due to the relatively large number of such 
lattice sums that have been performed in actual calculations, fast and accurate 
techniques are preferred. So far, in the context of the LCAO-SCF-CO procedure, 
two approaches have been considered: The first one is based on a two-center expansion 
of the Coulomb operator [8], and the second [9] applies the Fourier representation 
method, originally developed by Harris and co-workers [lo-121. 

In this paper, we comment on the actual applicability of, Fourier representation 
formulas to the problems mentioned above, and we propose replacing the original 
expressions by more efficient ones in the ranges where the former are no longer optimal. 
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II. FOURIER REPRESENTATION EXPRESSIONS 

In the framework of the Fourier representation method, a general expression for 
evaluating Madelung sums, Y(s,) 

has been obtained [12]: 

WsJ = - % Qm *n 2 + % mi; Qm 
--. 2’ 1 

(1) 

(2) 

We are concerned with periodic lattices in which cells are electrically neutral 
(Q, + Qz + *.* + Qd = 0). s, denotes the location of charges Qm in each cell and 
smn is the vector defined by s,,, - s, . The quantities SF” and srn represent 1 s,~ - s,~ 1 
and [(s,~ - s,“)~ + (sV” - ~,~)~]l/~ and a is the unit cell length. Figure 1 illustrates 
geometrically the quantities. The prime on the summation symbol indicates that 
Qm = Qn has to be excluded; y (= 0.5772156649) is the Euler constant. 
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FIG. 1. Location of two point charges, Qn = +l and Q,,, = - 1, in the unit cell. 

Equation (2) is of general applicability except when ST 3 0, which means that Qm 
and Qn lie on the same line parallel to the axis of periodicity, 9. In this event the 
Qm contribution can be computed according to [9] 

Qm - contribution = - + [ZY ($) + cot (5) + 2(y + 2 In 2)]. (3) 

Y(x) is the digamma function, which is efficiently evaluated by using an expansion in 
Chebyshev polynomials [ 131. 

As indicated in the original paper [12], Eq. (2) still contains an infinite summation; 
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however, the Bessel function, K,(x), causes the sum to be exponentially convergent. 
This is evident from the fact that for large values of the argument x, K,(x), can be 
approximated by (see [14, Eq. 9.7.21) 

K,(x) = (g)l” e-2 [l - -&- + &I. (4) 

In actual polymer calculations, however, x is related to differences between centers 
of charges and might become small, though not identically zero. In such cases, the 
exponential behavior disappears and Eq. (4) is no longer appropriate. The right 
limiting form is now (see [14, Eq. 9.6.81) 

K,(x) - -In(x). (5) 

Such series involving logarithms are known for their poor convergence; and, conse- 
quently, whenever sr” is small enough so that 

(6) 

is hard to evaluate, another expression should be used. The way Eq. (6) behaves for 
small srn’ s is illustrated in Table I, where values corresponding to the test case pictured 
in Fig. 1 are collected. When sr” is smaller than 0.1, it is appropriate to use a more 
efficient way of evaluating Eq. (6), since it frequently occurs in actual problems. 

III. EXPRESSION FOR SMALL s~'s 

The practical difficulties associated with small values of sr” in the evaluation of 
Eq. (6) can be overcome by using the following integral representation of K&b) 
(see [14, Eq. 11.4.441): 

K,(nb) = J-omx~y)x~ (n > 0, b > 0) 

together with (see [15, Eq. III-3c.b. I]) 

m cos(nc) c -=-L+ TT cosh[x(n - c)] 
n=l ?I2 + 2 2x2 2x sinh(nx) ’ 

(7) 

09 

For simplification, we have defined b = (27&) sr and c = (27r/a) sr”. After insertion 
of Eqs. (7) and (8) into Eq. (6) the latter now reads 

gl cos(nc) K&b) = SW xJ,,(bx) I- & + 7T coshfx(rr - ‘)I 2x sinh(rx) 0 
(9) 
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The interchange of the order of the summation and integration is legitimate, since 
the uniform convergence of the series is satisfied everywhere under the conditions 
IZ > 0 and b > 0. After elementary manipulations, we end up with 

We now divide the integration into regions, each of which will be suitable for efficient 
evaluation. Assuming that we aim for six significant figures and due to the fact that 
for x > 3.0, exp(-2rx) is less than lo-+, Eq. (10) can be broken into two parts 

1 
I 

m dx -- 2 3 x J,(bx){ 1 - x5-[e-e” + e-(2n-c)r]}. (11) 

This can be rearranged to 

il cos(nc) K,(d) N ; IO3 dx J,(bx) [ - $ + “[e-;s; T’;-““t 

1 -- 
f m i%. J,(bx) + f irn [e-cz + e-(2n-c)r] J,(bx) dx. 

23 x 
(12) 

Using the result (see [16], Eq. 6.611-l), 

I m e-CzJo(bx) dx = (c2 + @-J/2, 
0 

we finally obtain 

(13) 

t cos(nc) Ko(nb) N ; lo3 dx J,(bx) f - ; + n [ e-c;:a~2;C)Z ] 1 
Tkl 

[p + (2: - @y/2 
I  

l (14) 

We were unable to find an appropriate tabular entry for the integral in the right- 
hand side of Eq. (14), but it is 2asily handled by numerical integration. Figure 2 
shows the graph of the integrand for various values of ST in the case of SF” = 10-l. 
It is a well-behaved function. For very small x, a series expansion is recommended 
to avoid numerical inaccuracies due to cancellation of large values 

- r[sinh(cx) + CP* + e-(an-c)z] . 
(15) 
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- 6-O 

FIG. 2. Graph of v(x) = J&x){ -l/x + T [emcz + e-c*+)2}]/(esns - 1) for three values of c 
(from left to right curve c/2a = 0.01, 0.1, and 0.4). The values of b and a are 0.2~ and l.Orr, respect- 
ively. 

with 

and e=+!?$+2i!+. (I(j) 
945 

The presence of the Bessel function J&XC) as a factor in the integrand affects the shape 
of the graph very little, since actual values of b (= (27r/u) SF) are small enough to 
confine bx close to the origin when x varies from 0.0 to 3.0. Equation (14) is, therefore, 
well suited for those cases (,ss mn < 0 1) where direct summation in Eq. (6) becomes . 
prohibitive. Equation (14) is not adapted for large values of b since J,,(bx) would bring 
an oscillatory character to the integrand and cause the numerical quadrature to be 
hard to perform. A six-point Gauss-Legendre quadrature in each of the following 
intervals (O., 1 .O), (1 .O, 2.0), and (2.0, 3.0) has been found satisfactory for our accuracy 
requirements. This approach gave us six significant figures for values of sr” (in units 
of a) ranging from 0.001 to a value close to unity (.s’rn = 0.999). The function’J&3b), 

(17) 

is easily evaluated using an expression in term of Chebyshev polynomials (see [13, 
p. 325, Table 9.31). In practice, when a good choice between Eqs. (2), (3) and (14) 
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is made according to the actual value of SF”, a sensible way for evaluating accurately 
and at moderate cost the Madelung summations arising in quantum-mechanical 
calculations of chainlike systems has been achieved. 
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